2008年12月16日 星期二

數學歸納法(三)

上文提到證明n=1時命題正確是非常重要的。我這樣說其實經已有問題,數學不會容納任何‘多餘’的東西,一切都重要。

不做這個‘簡單’步驟,我們便可推導出很多荒謬的結論。一個經典例子就是所有自然數都相等!?甚麼?這就是說1等如2也等如10,000,總之所有自然數都相等。以下,便是使用數學歸納法的‘證明’。

假設命題於n=k時正確,這即是k=k+1,(再一次,數學歸納法是說假設正確,並不是說正確)那麼,於左右方都加1,便會變成k+1 = k+2即(k+1)=(k+1)+1,明顯地,若命題於n=k時正確,於n=k+1時亦正確。若我們立刻跳到命題正確,這便極度荒謬!

問題就是命題於n=1時不正確,1並不等如1+1!

常人常以難易來決定事情的重要性,但邏輯並不這樣看,要符合兩個條件便是兩個,沒有那個比另一個重要!

這也帶出了科學的一個重要限制,科學永遠無法說清所有條件!例如,現在我就在茶樓裏寫網誌,為甚麼我會坐在這裏呢?當然,是因為我今早按時起床,又沒有身體不適,也沒有緊急的工作要處理……我可以繼續說下去,究竟有多少個條件呢?事實就是,不論我寫下多少個條件,我都總可再加一個。以數學的概念,這便是無限多!

既然是無限多,就沒有一個是決定性的。佛家便稱這為‘性空’,‘緣起’就是講這些條件,如來佛祖於兩千五百年前,就經已建立了這個完備的哲學體系,他就是教我們,‘諸法因緣起’,即一切的現象,都祗是條件合適的結果。但更重要的是‘性空’,‘空’並不是空無一物,而正是由於有無限多的條件,任何條件都不能有決定性。

差不多二十年前,我遇到一位佛學修為極高的朋友,他有一子,當時正剛升上小一,這小孩活潑可愛,而且由文學到科學、數學到運動,無一不精。我並不是客套,而是由衷的說:‘你的孩子將來必成大器!’我的朋友回應說:‘他會不會一息間走出馬路,死於交通意外呢?’

‘又或他染上腦膜炎,大腦受損而變成白痴呢?’

‘未來的未來,我就是享受和他現在每一刻的相處和關係!就是因為不知下一秒鐘會發生甚麼事,所以我更積極,就把這秒做得更好!’

科學其實就在講‘緣起’,和佛家的分別就是‘控制實驗’(control experiment),這就是盡一切辦法,把其他條件控制,祗研究一兩個變數!但必需注意,科學祗限於‘控制實驗’而不是現實世界!所以,科學從來都不是‘真理’。

1 則留言:

koopa koo 提到...

Induction is more like a gift or reward for one's observation.

As the author says, there are statements in which you know it must be true by experiments, but you are yet uncertain about it because you do not have a "proof". For example, let's look at the primes. We observe that when a prime is of the form 4k + 1. For example, 5, 13, 17, 29, ...etc. We may write the prime as a sum of two squares. i.e. 5 = 1^2 + 2^2, 13 = 2^2 + 3^2, 17 = 1^2 + 4^2, 29 = 2^2 + 5^2.

As the list go on and on, we will start to "believe" that this must be true for all primes of the form 4k + 1. However, we need to proof to make sure that there is no exception. In this situation, induction is a powerful tool to reward our observation.

Interested reader might want to give a "proof" using induction to the statement: Every prime of the form 4k + 1 can be written as a sum of two squares.

[Hint: you will need the fact that every prime dividing n^2 + 1 for some n is of the form 4k + 1.]

However, induction does have its weakness. For example, it is true that you can prove the above statement by induction, but you do not know "why" the statement is true. One of the reasons why the above theorem is true lies in the realm of algebraic number theory and we will not discuss it here.